Mammography: Is AI Better than Humans?

In recent years, artificial intelligence (AI) has made remarkable strides in revolutionizing the landscape of the medical field, offering unprecedented opportunities for enhanced patient care, diagnosis, and treatment. From accelerating the analysis of medical imagery to predicting disease outcomes with unparalleled accuracy, AI-powered technologies have swiftly established themselves as indispensable tools for healthcare professionals. Beyond diagnostics, AI has played a pivotal role in drug discovery, streamlining clinical trials, and personalizing patient interventions. As AI continues to evolve, its potential to transform healthcare systems globally is becoming increasingly evident, promising not only improved medical outcomes but also cost-effective solutions and optimized resource allocation. The fusion of AI’s computational prowess with medical expertise heralds a new era of medical advancements that hold the potential to alleviate the burden on healthcare systems, save lives, and redefine the standards of patient well-being.

In the United States alone, it is estimated that around 40 million mammograms were performed each year. Mammograms are crucial as they are the primary method for early detection of breast cancer, enabling timely intervention and improving survival rates. By detecting small abnormalities and tumors that may not be palpable, mammograms help identify potential breast cancer cases in their earliest stages, allowing for more effective and less invasive treatment options.

Abnormal mammogram

Radiologists often find themselves overwhelmed due to the increasing volume of medical images requiring analysis, coupled with a shortage of radiology specialists. The demand for accurate and timely diagnoses, especially in fields like mammography, can lead to extended work hours and heightened stress levels among radiologists. Introducing AI technologies can alleviate this burden by assisting in image analysis, enabling radiologists to focus on complex cases and ensuring more efficient patient care.

How AI Helps in Mammography

A recent study published in The Lancet Oncology suggests that artificial intelligence (AI) may outperform trained doctors in detecting breast cancer from mammogram images. Mammograms face challenges due to factors like breast density, leading to missed cancer cases. The study analyzed 80,000 mammograms from Swedish women, finding that AI-assisted readings detected 20% more cancers compared to human radiologists. While not a standalone solution, AI could alleviate doctors’ workloads, enhancing accuracy without increasing false negatives. Despite FDA-approved AI technologies, integration with conventional methods is likely, aiding radiologists in managing a growing workload. The balance between AI and human expertise remains essential, ensuring optimal patient care and early cancer detection.

Healthcare experts, including the NHS and the Royal College of Radiologists, acknowledge AI’s promise in enhancing efficiency, decision-making, and prioritizing critical cases.

Vesta Teleradiology

AI applied to diagnostic imaging holds the potential to significantly enhance the level of patient care. We eagerly anticipate further progress in this field. However, we maintain the viewpoint that presently, no machine can effectively substitute for the expertise of a skilled human observer for interpretations. At Vesta, we offer the services of radiologists who are US Board Certified, dedicated to delivering precise preliminary and final analyses. Discover how we can bolster your radiology department by reaching out to us today.

 

Sources:

Criver.com
health.com
theguardian.com
openai.com

 

How is Teleradiology and AI Impacting the Medical Industry Today?

Artificial Intelligence (AI) is revolutionizing the medical industry, transforming the way healthcare is delivered, diagnosed, and managed. With its ability to analyze vast amounts of data quickly and accurately, AI is reshaping various aspects of healthcare. From aiding in disease diagnosis to personalized treatment recommendations, AI is enhancing the precision and efficiency of medical practices. Moreover, AI-powered technologies are streamlining administrative tasks, optimizing resource allocation, and improving patient outcomes. As AI continues to advance, it holds immense potential to revolutionize healthcare delivery, foster medical innovations, and ultimately improve the quality of patient care on a global scale.

Teleradiology has had a profound impact on healthcare by enabling remote access to radiology expertise, bridging geographical barriers, and ensuring timely diagnoses. It has improved patient care by providing faster turnaround times, facilitating collaboration among radiologists, and increasing access to specialized interpretations, ultimately enhancing diagnostic accuracy and treatment outcomes. Going even further, a latest white paper from One Call describes how teleradiology and AI are helping reduce the strain of the radiology shortage.

artificial intelligence

Teleradiology and AI in Action

Medical imaging vendor, Nanox, is looking to address heath disparities and lack of access care with a new x-ray system which would be offered to countries in Africa, Asian and South American using a pay-per-scan model. The potential of combining cold cathode X-ray technology with teleradiology and artificial intelligence (AI) to enhance diagnostic capabilities and improve healthcare economics. Cold cathode X-ray systems offer advantages such as reduced energy consumption and improved image quality. When integrated with teleradiology, these systems can enable remote interpretation of X-rays, leading to faster diagnoses and improved patient care. Additionally, the use of AI algorithms in conjunction with cold cathode X-ray technology has the potential to enhance image analysis, automate certain tasks, and optimize resource allocation, offering cost-saving opportunities in healthcare settings.

diagnostic imaging
A teleradiologist examines a chest x-ray

There are plans to roll out AI-powered teleradiology by the “Screen for Life” program at the Primary Health Care Corporation in Qatar, aimed at early detection and prevention of cancer in the United Arab Emirates. The program plans to utilize AI algorithms to analyze radiology images, enhancing the accuracy and efficiency of cancer screening. The integration of AI in teleradiology will help automate image interpretation, expedite diagnoses, and reduce the workload on radiologists. The implementation of AI teleradiology in the “Screen for Life” program is expected to improve cancer detection rates, streamline healthcare processes, and ultimately save lives by identifying cancers at earlier stages.

Vesta Teleradiology

Looking to outsource your radiology interpretations using an expert Teleradiology company that is at the forefront of technology including AI?  Please reach out to Vesta to learn more. Vesta Teleradiology can accommodate any type of volume, large, medium and small.

Sources:

Radiologybusiness.com
menafn.com
openai.com
cdc.gov

What is a Smart Hospital?

Today’s smart hospital is not just a paperless organization with digitized charting. Although being digitized is an excellent start to a smart hospital, the process is much more advanced.

The goal of a smart hospital is better patient care while streamlining operational efficiency and costs. Three essential layers need to be addressed by a hospital to achieve the classification of a “smart” facility.

Step 1–Operations

Even though all hospitals gather information about their patients, operations, and management, a smart hospital takes gathering data to a different level.

In a smart hospital, analytic systems and software integrate all the information utilized by doctors, nurses, facility personnel, and administrators. A desktop, smartphone, or handheld device can access this information, resulting in faster, more efficient decision-making by key people.

With automated systems, the management of staff, pharmaceuticals, supplies, consumables inventory, assets, equipment, patients, and even visitors is controllable by the appropriate hospital teams. The process is cost-saving and efficient for the hospital and the patient.

To achieve these network-based services, hospitals with a large traffic volume and frequent environmental changes best utilize 5G or Wi-Fi 6 technology which is a step up for most hospital internet access.

Step 2–Clinical Tasks

The doctors’ and nurses’ efficiency depends on communication with departments like critical care, surgical, and technical (lab and X-ray) services.

A smart hospital improves patient outcomes by utilizing remote monitoring tools. Medical professionals can immediately monitor a patient’s vital signs, steps, heart rates, allergies, and lab results. The added communication also allows more patient input about likes, dislikes, and comfort zones. Smart hospitals will also utilize teleradiology services like Vesta in order to process more imaging interpretations remotely and efficiently.

 

INSIDE CANADA’S FIRST SMART HOSPITAL

Step 3-Patient Care

A patient’s room is very different within a smart hospital. A patient can access help through voice-based interactive devices to dim the lights, call a nurse, request pain medication, or make phone calls to loved ones—no more worries about a dropped call button on the floor.

The smart hospital design focuses on enhancing the healing process for faster recoveries by featuring open spaces and gardens. Children can also have specially designed areas for their comfort.

Caring robots in hospitals are providing added support in the facilities. Smart hospitals have programmed robots to perform surgeries; provide dementia care for the elderly; provide biofeedback for patient anxiety; transport supplies, blood, medication, meals, and garbage.

automation
Robots are reshaping hospitals

Hospitals have also programmed robots to provide care in quarantine isolation booths or entertain hospitalized children for a more positive emotional experience.

The Future

The future of smart hospital strategies is endless. The hospital environment and opportunities will continue to expand for the cost and convenience benefits of the hospital operations and its patients. The hospital will be able to extend most of the “smart” gifts to the patient’s home.

Patients will be able to take home smartwatches and other monitoring equipment for continued hospital care. More utilization of mobile monitoring equipment will allow the hospital to operate as intended–for emergencies, surgeries, and intensive care units–and will enable the patient to recover safely in the comfort of their home. And even more exciting is the future use of Artificial Intelligence to further enhance the benefits of the smart hospital.

 

Recent Advancements in Nuclear Medicine

The medical community is always looking for new and better ways to serve patients and save lives. Science, medicine, and technology often intersect to break barriers and create innovative new treatments – and nowhere is that truer than in the field of nuclear medicine.

What is Nuclear Medicine?

The National Institute of Biomedical Imaging and Bioengineering defines nuclear medicine as a specialty that uses radioactive tracers to diagnose and treat disease. Nuclear medicine is invaluable for patient care, as it can help detect disorders in the bones, gall bladder, heart, and much more.

advancements in nuclear medicine

This field has seen tremendous advancements in recent years, which offer the potential for incredible and life-saving benefits. Here are some of the latest developments in nuclear medicine.

Making AI More Effective

Artificial intelligence has been an integral part of medicine for decades, particularly in the realm of diagnostics. And now, new research suggests that nuclear medicine may make AI-based diagnostics even more effective.

radiology interpretations

For example, researchers in the Journal of Nuclear Medicine (JNM) suggest that nuclear imaging can help with machine learning and AI cancer diagnoses. This is because nuclear imaging creates a high contrast between tumors and normal tissue, making it much easier for the machine to identify abnormalities. Combining AI diagnostics with nuclear medicine can make the machines more accurate, which will ultimately result in better patient care over time.

Detecting Heart Disease

Radionuclide imaging has long been used to detect issues in patient heart function. However, researchers are beginning to explore new uses for this technology – including the examination of the heart’s very molecules.

Research from 2020 found that radionuclide imaging is successful at detecting cardiac amyloidosis, a rare condition in which a protein called amyloid is deposited in the cardiac muscle. Amyloid deposits can cause buildup over time and ultimately lead to heart failure, so it is very important to detect this condition as early as possible.

Discovering New Treatments

Nuclear medicine has many potential uses for imaging and diagnostics. However, it also offers many benefits for researchers.

For example, scientists at the Vanderbilt University Institute of Imaging Science recently used a radioligand (a radioactive substance used to study receptors in the body) to study whether an antioxidant called ERGO could penetrate the brain and protect against oxidative stress. The study successfully proved that ERGO can penetrate the brains of mice, which opens doors for further research on using this antioxidant to treat conditions like Alzheimer’s disease.

Nuclear medicine is always developing and advancing, and each advance makes it easier to give patients the care they deserve. 

 

Nuclear Radiology Readings

 

We are proud of our talented pool of teleradiologists who specialize in a variety of subspecialties, including nuclear radiology. If you’ would like to learn more about how we can integrate with your current workflow in order to provide preliminary and final interpretations, please contact us now at 1-877-55-VESTA

How AI is Making an Impact on Radiology and Imaging

The fields of science and medicine are always progressing. This progression intends to help both patients and providers.

Today, artificial intelligence (AI) is becoming common as a way to diagnose patients. It provides a more efficient way to collect and store information. The software can even analyze imaging to a high level of accuracy. This helps providers catch a problem that they may have missed before.

AI is a field that is advancing quickly. What progress have we seen in the past couple of years? What programs have we begun to put in place?

What Is Artificial Intelligence?

Artificial intelligence refers to highly advanced computers or computer-controlled robots. These computers are capable of performing incredibly complex tasks. Before, we thought these tasks could only be done by intelligent beings.

AI in imaging
AI is making advancements in the medical field

These computers are often associated with human characteristics. They seem to be able to reason and learn from past experiences.

How Is Artificial Intelligence Used For Diagnostic Imaging & Radiation?

Using AI in radiology and imaging has been gaining traction in the medical world. We use it largely to store and analyze data, helping physicians to make a prognosis. AI can store and analyze all a patient’s records. It can then make a diagnosis based on those records. The analysis is often far more accurate than what a human counterpart can do.

The use of AI is also helpful because of its storage capability. AI can have large imaging biobanks to hold more images than standard computers.

It also makes the lives of physicians easier by filtering patients by need. It can recommend appropriate diagnostic imaging based on the patient’s current records. It can also sort patients by priority in the case of an emergency.

What Advancements Have Been Made?

AI means to eliminate problems associated with human limitations. Traditional imaging takes a team of technicians. They must take the imaging as well as interpret it. This can be time-consuming. Plus, AI is able to analyze images with far greater accuracy than the human eye.

Radiomics

Radiomics is a tool that performs a deep analysis of tumors down to the molecular level. AI can perform radiomics with far better accuracy than the human eye or brain.

AI can analyze a specific region and extract over 400 elements. It then takes these features and correlates them with other data to form a diagnosis. The AI can analyze features from radiographs, CT, MRI, or PET studies.

Rapid Brain-Imaging AI Software

Hyperfine is the manufacturer of portable MRI machines. They are now creating these machines with new AI intelligence software. They believe that this new software will be able to perform brain scans in under 3 minutes.

AI-Generated Drugs

In 2020, an AI-created drug went to human clinical trials. The drug intends to treat OCD, and was designed entirely by AI. Exscientia is the manufacturer of the drug. They say that it normally takes about 4.5 years to get a new drug to this stage of testing. With AI generation, the drug got to the human clinical trial stage in under 12 months.

Making A Diagnosis

We stated earlier that AI is being used as a way to more efficiently diagnose patients. Still, relying entirely on AI to do this can complicate things and may be unwise.

So, the researchers of MIT’s Computer Science and Artificial Intelligence Lab worked to combat this. They created a machine learning system that analyzes the data and decides whether to diagnose.

If it “feels” it’s unable to make an accurate prediction, it will defer to a medical professional. It even considers whether to defer to an expert based on who in the medical team is available. It will consider each team member’s availability, level of experience, and specialty.

Conclusion  

AI in diagnostic imaging shows promise to truly advance quality of care for patients. We are excited to see more advancements in this arena. In the meantime, we don’t believe any machine can currently replace a trained human eye when it comes to interpretations. At Vesta, we provide US Board Certified radiologists who work to provide accurate preliminary and final interpretations. Learn how we can support your radiology department– contact us today.